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A NEW APPROACH TO UNIDIMENSIONAL POVERTY ANALYSIS:
APPLICATION TO THE TUNISIAN CASE
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Fuzzy conceptualization of privation has been a step closer to more realistic handling of poverty.
However, fuzzy approaches to poverty are still grounded on parametric axioms. Moreover, construc-
tion of poverty lines within these approaches still relies on ad-hoc methods. In this paper, we advance
instead a fuzzy procedure based on the non-parametric bootstrap method, allowing us to depict
fuzzy unidimensional privation states with boundaries drawn spontaneously from data. Fuzzy non-
parametric measures of privation within each state as well as a collective fuzzy non-parametric index of
poverty are derived, along with their corresponding confidence intervals. The new approach is applied
to the analysis of poverty in Tunisia in 2005.

JEL Code: 132

Keywords: fuzzy sets theory, nonparametric bootstrap method, poverty thresholds, welfarist approach

1. INTRODUCTION

There is an international consensus on the necessity of poverty reduction
strategies, aiming at empowering as many poor and marginalized people as pos-
sible. Indeed, the central objective of the Millennium goals agreed at the United
Nations Millennium Summit in New York in 2010 is the halving of poverty by
2015. On the other hand, there is a wide recognition among researchers and policy
makers that poverty is a complex notion. The tricky challenge is then to identify
the “real poor” and devise realistic measures as faithful as possible to the intrinsic
nature of poverty phenomenon, mainly that effective poverty monitoring relies on
the accuracy of poverty measurement and analysis.

Traditionally, research on poverty has been based on a clear cut-off line,
roughly dividing the population into “poor” and “non-poor.” The choice of a
poverty line is crucial for poverty measurement and analysis. The stochastic domi-
nance approach to poverty has allowed us to circumvent uncertainty inherent to
this choice by considering a range of poverty lines and a class of poverty indices
instead of one precise index (see Foster and Shorrocks, 1988; Duclos et al., 2008).

Under this classical framework, poverty has been viewed as an attribute
characterizing an individual in terms of its presence or absence. A significant
criticism has been made to this rigid poor/non-poor dichotomy. In recent years, a
considerable literature on the fuzzy sets theory (Zadeh, 1965) has provided a new

*Correspondence to: Asma Zedini, Avenue Ibn Khaldoun, Numéro 120, Cité Ettadhamen, Ariana
2041, Tunisia (asma.zedini@yahoo.fr).

© 2014 International Association for Research in Income and Wealth

465



Review of Income and Wealth, Series 61, Number 3, September 2015

approach to allow for the matter of degree state of poverty and to manage the
fuzziness and imprecision of poverty measurement.

Apart from this debate on the rough/smooth transition in the state of priva-
tion, another stream of research has tackled the controversy of unidimensional
versus multidimensional conceptualization of poverty. The welfarist approach
has been intensively used in the literature for the explanation and measurement
of poverty. However, many authors have pointed out that it cannot alone fully
capture individual living standards, both material and social. A considerable
international research has adopted Sen’s capability perspective (Sen, 1985) and has
focused on multidimensional poverty by considering not only monetary variables
but also other dimensions related to living conditions. We can cite, for instance,
among others the works of Atkinson and Bourguignon (1982), Maasoumi (1986),
Klasen (2000), and Bourguignon and Chakravarty (2003).

Fuzzy conceptualization of poverty has joined the unidimensional/
multidimensional controversy. Several papers considering the application of
fuzzy techniques to unidimensional poverty analysis have been published (see,
for example, Shorrocks and Subramanian, 1994; Belhadj, 2011). Application
of fuzzy techniques has also reached multidimensional approaches to poverty
analysis (see Lemmi and Betti, 2006). Indeed, the works of Cerioli and Zani (1990),
Cheli and Lemmi (1995), Naidoo et al. (2005), and recently Betti and Verma (2008)
and Belhadj and Limam (2012) are considered among others as the major contri-
butions in this field.

The scope of our work is unidimensional as we consider that most contribu-
tions to poverty analysis have been first conceived within the unidimensional
framework to pave the way for potential extensions to the multidimensional
perspective.

For both unidimensional and multidimensional approaches, identification
of “the poor” remains a crucial step for the accuracy of poverty measurement
and analysis. The arbitrariness of the value assigned to the poverty line has been
pointed out in the literature as it has usually been assumed to be fixed and given
in advance (Foster and Shorrocks, 1988). Furthermore, construction of poverty
lines within fuzzy approaches to unidimensional poverty analysis has mainly
relied on nutrition-based techniques, namely the Food Energy Intake Approach
(Greer and Thorbecke, 1986a, 1986b) and the Cost of Basic Needs Method
(Ravallion and Bidani, 1994). Many researchers have criticized the arbitrary
foundation of these methods as calorie and basic needs depend on age and some
other social demographic variables. Even so, the results brought out by both
nutrition-based methods might be quite different as this has been pointed out by
Wodon (1997). Indeed, the application of fuzzy unidimensional approaches to
the measurement of poverty has been made within a parametric and axiomatic
setting.

The purpose of our work is to fill the gap by advancing a novel approach
that confers a non-parametric perspective to the application of fuzzy approaches
to unidimensional poverty analysis at both levels of poverty identification and
measurement.

The paper is organized as follows. The next section is devoted to the descrip-
tion of the first stage of this new approach, corresponding to the identification of
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the fuzzy non-parametric privation states. In Section 3, we move on to the second
stage, namely the procedure used for the computation of fuzzy non-parametric
unidimensional poverty, while in Section 4 we discuss the results of the application
of this new approach to the Tunisian case. Section 5 concludes the study.

2. Fuzzy NON-PARAMETRIC PRIVATION STATES
2.1. Fuzzy Poverty

Fuzzy set theory (Zadeh, 1965) has allowed us to move away from the
poor/non-poor dichotomy and to consider instead the state of poverty or well-
being of a person as a matter of degree. Cerioli and Zani (1990) have considered
the group of poor households as a fuzzy set S, including the whole population with
a membership function varying between 0 and 1, where if 7' denotes a universal set
of objects—the range of all possible values for an input to a fuzzy system—then the
membership function us has the form: us(z) : 7 — [0, 1], where S is the fuzzy set
and [0, 1] is the interval of real numbers from 0 to 1: us(z) = 0 if the element 7 does
not belong at all to S whereas ps(f) = | means that the element # completely belongs
to S, and 0 < us(?) < 1 if ¢ partially belongs to S. The membership function allows
to express this gradual membership. This makes its specification a systematic and
basic step in the application of fuzzy set theory to poverty measurement. Indeed,
Zadeh (1965) has defined a fuzzy set as “a class with a continuum of membership
grades.” The most commonly used forms for functional membership functions are
piecewise linear, triangular, trapezoidal, and Gaussian shapes.

A crucial question in poverty research is the identification of the upper and
lower bounds of the household well-being measure (i.e., income or expenditure).
Absolute poverty thresholds based on nutrition-based methods (Greer and
Thorbecke, 1986a, 1986b; Ravallion and Bidani, 1994) as well as relative poverty
lines have been criticized of being ad-hoc and expert judgment dependent. More-
over, application of fuzzy approaches to unidimensional poverty measurement is
still grounded on parametric and axiomatic modeling (see, for instance, Belhad]
and Limam, 2012). Belhadj and Matoussi (2010) have proposed a parametric
approach based on the configuration of three fuzzy privation states for the mea-
surement of unidimensional poverty.

In this research, we propose to let the data suggest the appropriate poverty
line instead of fixing it in advance. Consequently, the corresponding fuzzy priva-
tion states will be depicted from data and the procedure used for poverty mea-
surement will be based on a data-driven approach instead of an axiomatic
framework for the sake of more robust and reliable results. To this end, we
combine fuzzy logic tools with non-parametric techniques to devise a fuzzy non-
parametric procedure for the analysis and measurement of unidimensional
poverty.

2.2. Identification of Poverty States
Step 1

We start by considering 100 fuzzy sets of poverty S;forj=1, ..., 100, where
each one is defined as the set of couples S = {x, FNs(x)} for all x € the universe X,
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where X is the poverty predicate and where FNs(x) is the membership function
associating a real number in the interval [0, 1] to each point of X. The value of
the membership function represents the degree of belonging of x to S. The mem-
bership function should be non-increasing as an increase in welfare variables
like income or expenditures translates to a reduction in the degree of poverty.
Different methods have been used for constructing membership functions adapted
to poverty measurement and analysis (see Cerioli and Zani, 1990; Chiappero-
Martinetti, 2006). Indeed, the choice of the form of the membership function
should convey the nature and the real features of the phenomenon. Here, we make
the choice for a membership function form more adapted to the real features of
poverty phenomenon (used in Belhadj and Matoussi, 2010) and which is defined
as follows:

0 x<a,
1 a<x<b,
1 - -
(1) FN (x,a,b,c) X 1 + () b<x<e,
(c=b) (c-b)
0 X 2=c.

The parameters a, b, and ¢ are set among estimators of the percentiles of the
poverty predicate variable X, which are estimated via the bootstrap technique
(Efron, 1979). Then, the membership functions corresponding to the 100 fuzzy sets
are defined as follows:

For the first membership function defining the first fuzzy set:

FNS1 =FN (x,0, ﬁl’ ﬁz)’

where p, and p, are, respectively, the bootstrap estimates of the first and second
percentiles of the poverty predicate variable which are set as equal to parameters
b and ¢ of the membership function specified in 1.

For membership functions FNg to FNg , where j=2,...,99:

FNg =FN (x, Py Py Py ):

where p;,, p; and p;,, are the bootstrap estimates of the (j — 1)th, the (j)th, and
the (j + 1)th percentiles of the poverty predicate.
The last membership function is defined as follows:

FN

Si00

o (Do + D .
:FN(xanw:Pmo)a

where Py, and Py, are the bootstrap estimates of the 99th and the 100th
percentiles of the poverty predicate. Hence, the membership grades of households

i=1,...,nto fuzzy states Sy, . . ., Sio are defined by the following membership
grades matrix:
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[FNg(x;) FNg(x) FNg(x) -+ FNg (x)]
FNg(x,) FNg(x,) FNg(xy) -+ FNg (x;)

) FNg(x,) FNg(x;) FNg(x;) - FNg (x;)

|FNg(x,) FNg(x,) FNg(x,) - FNg (x,))

Step 2

The idea now is to detect a potential pattern arising from the fuzzy structure
of data, shaped through the 100 poverty fuzzy sets. Initially, we propose to start
by a visual sketch by plotting the values of the matrix of membership grades (2).
Then, we go a step further by considering the analysis of this fuzzy structure via
the scalar cardinality approach. The scalar cardinality of a fuzzy set is defined as
the sum of the membership grades of the elements of the fuzzy set. This measure
reflects the degree of containment of the elements in the fuzzy set. So, the higher
the degree of containment of the elements in the fuzzy set, the larger the fuzzy
cardinality measure and vice versa (Dhar, 2013). Hence, for each poverty fuzzy
set S;for j=1, ..., 100 defined at Step 1, a scalar cardinality measure will be
computed and this allows us to obtain consequently a sequence of cardinality
measures.

Now, for investigating the existence of a potential categorization of the 100
fuzzy sets into k fuzzy states, we consider the application of the non-parametric
approach of Matteson and James (2013) for the analysis of change points to the
dataset of scalar cardinality measures. The approach does not make any assump-
tions about the distribution and the nature of the change beyond the existence of
oth absolute moment for some ¢ in (0, 2). The non-parametric estimation of both
the number of change points in the sequence of scalar cardinality measures and the
positions (corresponding to fuzzy sets) at which they occur is based on the divisive
hierarchical algorithm which is included in the ecp package in the R statistical
software. This algorithm focuses on detecting any distribution change within an
independent sequence, based on a divergence measure (see section 2.1 in Matteson
and James, 2013). Indeed, hierarchical significance testing is used to determine the
statistical significance of change points and it is set as a stopping criterion for the
iterative estimation procedure. An outline of this algorithm is provided in James
and Matteson (2013).

3. Fuzzy NON-PARAMETRIC UNIDIMENSIONAL POVERTY

Here, we go ahead with the presentation of the computation procedure for
deriving the fuzzy non-parametric measures of privation within each state which
leads us to the next stage of devising a collective fuzzy non-parametric index of
poverty.
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3.1. Fuzzy Non-Parametric Privations Measures

We describe below the procedure we follow to compute the fuzzy non-
parametric measure of privation within each privation state.

Step 1

* Each household in the sample has a vector of 100 values corresponding
to its membership grades to 100 membership functions (see Section 2).
According to the results in Section 2, we decompose this vector into k
vectors (corresponding to k fuzzy states) where each one includes member-
ship grades corresponding to each fuzzy non-parametric privation state.

Step 2

* In order to derive the aggregate membership grade of the household over
the fuzzy non-parametric privation state, we consider the union between
fuzzy sets within the fuzzy non-parametric privation state and we apply
therefore the maximum fuzzy operation to the vector including membership
grades of households to the privation state, obtained at Step 1 (see Zadeh,
1965 for an overview of fuzzy sets operations).

» Compute a bootstrap estimate of the aggregate membership grade of the
household over the fuzzy non-parametric privation state.

Step 3
* Repeat Steps 1 and 2 for all households of the sample.

Step 4

 In order to derive a fuzzy non-parametric measure of privation for each
state, we take the weighted mean of the vector of aggregate membership
grades of all households i=1, ..., n over the fuzzy non-parametric priva-
tion state. Let us consider A4; as the aggregate membership grade of house-
hold i on the fuzzy non-parametric privation state j, where j=1, ..., k.
The fuzzy non-parametric measure of privation within each state is defined as
follows:

1
0, =NZW,.A,I..

The weights w; stand for the size of the household; namely, the number of
people per household, and N stands for the total number of people in the
sample.

* Then, we use the non-parametric bootstrap method to compute a boot-
strap estimate of this statistic, and obtain as well the bootstrap percentile
confidence interval of this measure, for each privation state.

The Bootstrap, the Jackknife, and other re-sampling techniques (Efron, 1982)

have gained in popularity as a set of useful tools for applied statisticians and
researchers all over the world. Indeed, the design complexity inherent to some
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surveys (stratification, unequal selection probabilities) have led to the development
of design-based re-sampling methods such as the Taylor Linearization Method
and the Jacknife Repeated Replication Method. These methods have been applied
for variance estimation of complex indicators of poverty (see Osier, 2009; Verma
and Betti, 2011). Given the difficulty with getting access to survey design informa-
tion in most complex surveys, we opt for the bootstrap method as an alternative
for variance estimation, in this research. The principle of the bootstrap method
(Efron, 1979; Efron and Tibshirani, 1993) is to re-sample randomly with replace-
ment from the data at hand to estimate the empirical distribution of statistics,
without making any assumptions about their theoretical distributions. We have
also used this method to derive bootstrap percentile confidence intervals for boot-
strap estimates of the measures indicated above.

3.2. The Collective Fuzzy Non-Parametric Index of Poverty

The measurement of the total poverty is the sum of the k fuzzy states privation
measures using the max-min convolution of fuzzy numbers. Let us assume for
example that k =3 corresponding to three fuzzy privation states that we choose
to designate as a strong privation state, a medium privation state, and a weak
privation state and let us consider Qs as the fuzzy non-parametric measure of
privation within the strong privation state, Qy as the fuzzy non-parametric
measure of privation within the medium privation state, and Qw as the fuzzy
non-parametric measure of privation within the weak privation state. We can then
define the collective fuzzy non-parametric index of poverty as follows:

3) P=\/(0s AQy AOy ),

where (Vv), (A) stand for the max—min convolution of fuzzy numbers. As indicated
at Step 4 in Section 3.1, the procedure allows us also to derive bootstrap percentile
confidence intervals for the estimates of fuzzy non-parametric privation measures
within each state, for the level o, e [0, 1]. We write bootstrap percentile
confidence intervals of estimates of fuzzy non-parametric privation measures for
the strong, medium, and weak privation states, respectively, as follows:

s = {Ls‘;’ Us(l—zd’

I, = {LWZ, UW(]_ZJ.

The bootstrap percentile confidence interval of the collective fuzzy non-
parametric index of poverty P is defined by applying the min—max convolution on
the lower and upper bounds of the confidence intervals defined above. The lower
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bound of the bootstrap percentile confidence interval of the collective fuzzy non-
parametric index of poverty estimate is defined as follows for a level of o

L, :\/[L o AL AL aj.
S M= W=
2 2 2

pZ
2

As for its upper bound, it is defined as follows:

g~ g o)

Hence, the bootstrap percentile confidence interval for the bootstrap estimate of
P is defined as follows:

I, = {Lpg, UP(I—;‘)}'

4. EMPIRICAL ILLUSTRATION

We consider a sample of the household budget data conducted by the
Tunisian National Institute of Statistics (TNIS) in 2005, involving 12,317 house-
holds. The survey provides information about total annual expenditures in dinars
per household as well as the size of each household. It also provides information
about additional indicators of privation, namely the economic area as well as the
social professional category of the household chief. Figure A.1 (see Appendix A)
depicts the boxplot of the total annual expenditure variable. A brief summary of
this variable is given in Table 1.

We define 100 fuzzy sets on the expenditures variable as indicated in
Section 2. Then, we plot the membership grades matrix as shown in Figure B.1
(see Appendix B).

Figure B.2 (Appendix B) depicts the scalar cardinality measures correspond-
ing to each fuzzy set. We use the divisive algorithm (see Section 2) to estimate the
positions of the fuzzy sets at which occur the change points in this distribution.

This computation yields the fuzzy non-parametric boundaries of three fuzzy
states as follows:

 Strong fuzzy non-parametric privation state: including fuzzy sets S; to Sa.

* Medium fuzzy non-parametric privation state: including fuzzy sets S4 to

S70.
* Weak fuzzy non-parametric privation state: including fuzzy sets S7; to Sio.

TABLE 1
SUMMARY STATISTICS OF THE TOTAL ANNUAL EXPENDITURE VARIABLE

Minimum First Quantile Median Mean Third Quantile Maximum

25 871 1,367 1,887 2,201 54,420
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TABLE 2

STRONG, MEDIUM, AND WEAK FUuzzy NON-PARAMETRIC
PrIvaTIONS (2005)

Privation State 0 |:Lo(’ U }
3 =3
Strong privation 0.352 [0.345, 0.359]
Medium privation 0.221 [0.215, 0.228]
Weak privation 0.186 [0.180, 0.192]

Note: Q stands for the estimate of the fuzzy non-parametric

privation measure for each privation state, and [La,U( a)}
o H o
2 2

stands for the bootstrap confidence interval of the corresponding
measure for o= 0.05.

Figures B.3, B.4, and B.5 (Appendix B) depict the aggregate membership
grades of households with total annual expenditures lying within the boundaries of
each fuzzy non-parametric privation state.

We move on afterwards to the computation of fuzzy non-parametric priva-
tions measures and the collective fuzzy non-parametric index of poverty. First, we
examine results within the whole population. Then, we compare privations in rural
versus urban areas and according to the social professional category of the house-
hold breadwinner.

According to the results in Table 2, the rate of unidimensional poverty in
Tunisia in 2005 is estimated to be 22.1 percent. In fact, using the max-min
convolution in (3) yields this estimate of the collective fuzzy non-parametric index
of poverty:

P=\/(0.352A0.221 A 0.186) = (0.352 A 0.221) v (0.352 A 0.186) = 0.221.

Also, we are 95 percent confident that the true measure of the unidimensional
poverty of Tunisian households in 2005 lies within the following bootstrap
percentile confidence interval:

1, =[0.215,0.228].

Indeed, histograms of bootstrap estimates of fuzzy non-parametric measures
of privation within strong, medium, and weak privation states are shown, respec-
tively, in Figures C.1, C.2, and C.3 in Appendix C.

As indicated above, the intensity of medium privation affecting Tunisian
population in 2005 is estimated to be 22.1 percent. This intensity may denote for
the Tunisian middle class, the high youth unemployment among graduates as well
as the problems of corruption and illegal enrichment of the former regime’s clan.

Indeed, the corruption among former president Ben Ali’s clan as well as the
high unemployment hitting young graduates has made the rich become richer and
the poor get poorer. This has contributed to increasing the huge frustration among
the population and led to the Tunisian revolution in 2010.
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4.1. The Regional Fuzzy Non-Parametric Poverty

The estimated fuzzy non-parametric measures of privations for urban and
rural areas are presented in Table 3. The results show that “strong privation” is
more intense for households residing in rural areas. On the other hand, the mem-
bership grades of households residing in urban areas to “weak privation state” are
more pronounced. Hence, any poverty alleviation policy in Tunisia should target
as a priority poor households in rural and remote areas.

4.2. The Fuzzy Non-Parametric Poverty by the Professional Social Category of
the Household Chief

Results based on Table 4 reveal that, on an average scale, agricultural
workers and unemployed persons are the categories most affected by strong
privation (strong privation intensity scores are about 55 and 60.5 percent,
respectively).

TABLE 3
STRONG, MEDIUM, AND WEAK FUzzy NON-PARAMETRIC PRIVATIONS BY AREA (2005)

0 [retyg] 0 [etul] 0 [net)

2 2 2 2 2

Urban areas 0251  [0.243,0.259] 0251  [0.241,0.261] 0258  [0.250, 0.268]
Rural areas 0499  [0.488,0.512]  0.178  [0.168,0.190]  0.08 [0.073, 0.087]

Note: QS, QM, and QW stand respectively for estimates of fuzzy non-parametric privation mea-
sures for strong, medium, and weak privation states. The corresponding bootstrap confidence intervals
of these estimates are defined for o= 0.05.

TABLE 4

STRONG, MEDIUM, AND WEAK Fuzzy NON-PARAMETRIC PRIVATIONS
ACCORDING TO OCCUPATION (2005)

] B L | B L

High liberal profession 0.065 [0.046, 0.084] 0.161 [0.131,0.190] 0.536 [0.508, 0.570]
Medium liberal profession 0.118 [0.090, 0.147] 0.221  [0.188, 0.258]  0.422  [0.386, 0.460]
Other employees 0.208 [0.231,0.252] 0.294 [0.274,0.318] 0.242  [0.221, 0.269]
Managers 0.257 [0.228, 0.284] 0.264 [0.240, 0.292] 0.241  [0.216, 0.266]
Self-employed persons 0.396 [0.360, 0.436] 0.235 [0.200, 0.270]  0.121  [0.098, 0.150]
Non-agricultural workers — 0.460 [0.447, 0.473] 0.206 [0.194, 0.218] 0.092 [0.083, 0.102]
Farmers 0.468 [0.446,0.490] 0.201  [0.180, 0.224]  0.092  [0.080, 0.105]
Agricultural workers 0.550 [0.511,0.588] 0.143 [0.110,0.181] 0.054 [0.034, 0.080]
Unemployed 0.605 [0.568, 0.645] 0.118 [0.083, 0.159] 0.034 [0.019, 0.054]
Pensioners 0.192 [0.172,0.211] 0.276 [0.256,0.298] 0.292  [0.273, 0.311]
Other inactive 0.347 [0.320,0.369] 0.211 [0.189, 0.234]  0.197 [0.177, 0.219]
Support outside the 0.388 [0.358,0.416] 0.204 [0.177,0.228] 0.163  [0.139, 0.190]
household

Note: QS, QM, and QW stand respectively for estimates of the fuzzy non-parametric privation
measure for each state. The corresponding bootstrap confidence intervals of these estimates are defined
for o= 0.05.
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On the other hand, these categories have the least privation scores on the
weak privation state (weak privation intensity scores are about 5.4 and 3.4 percent
respectively). Poverty policies in Tunisia should focus attention mainly on both
categories as targeting them may yield a significant improvement of the welfare of
the poor population.

5. CONCLUSION

In this paper, we have advanced a non-parametric view of the unidimensional
fuzzy approach to poverty by combining the non-parametric bootstrap method
with fuzzy logic tools. This has allowed us to circumvent the limits of the para-
metric setting of fuzzy approaches to unidimensional poverty analysis. Further-
more, depicting poverty thresholds from data has enabled us to get around the
risk of underestimation/overestimation of poverty measurement. Indeed, the new
methodology has brought out data-driven privation states, providing evidence
for theoretical assumptions made in several works on the unidimensional fuzzy
approach to poverty analysis.

We have applied this new approach to derive estimates of fuzzy non-
parametric poverty measures for the case of Tunisian households in 2005. Then,
we have gone a step further by providing an assessment of their accuracy by means
of bootstrap percentile confidence intervals.

We consider the proposed methodology as a step toward a more realistic con-
ceptualization of poverty. This may yield more accurate results for the sake of better
targeted poverty alleviation strategies. Indeed, this approach is a valuable tool for
researchers and policy makers to track the evolution of privations pattern within a
society and to empirically assess the efficacy of poverty reduction strategies.

Potential extensions of this new procedure may include the multidimensional
analysis of poverty within the framework of a more elaborated vision of poverty
concept.
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